职称/职务:特聘教授
主要研究领域:公共交通系统建模与优化、出行需求预测、出行行为
电子邮箱:wz.sun_trans@outlook.com
办公室:经管大楼A楼803室
职称/职务:特聘教授
主要研究领域:公共交通系统建模与优化、出行需求预测、出行行为
电子邮箱:wz.sun_trans@outlook.com
办公室:经管大楼A楼803室
教育背景 博士,都市社会工学(城市社会工程),日本京都大学,2017-2020 硕士,都市社会工学(城市社会工程),日本京都大学,2014-2016 学士,交通运输工程,同济大学,2009-2013 工作经历 特聘教授,BOB半岛·体育官方网站,2024至今 研究员,智能交通系统(ITS)实验室,日本京都大学,2020-2024 访问学者,交通地理信息(tGIS)实验室,西班牙马德里康普顿斯大学,2022 访问学者,交通与物流研究所(ITLS),澳大利亚悉尼大学BOB半岛·体育官方网站,2018 研究助理,都市社会工学,日本京都大学,2016-2017 |
科研项目 2024.04-2026.12 核心参与 国家自然科学基金国际合作与交流项目(52411540030) 2021.04-2024.03 共同主持 日本科学技术振兴机构(JST)国际战略合作项目(JPMJSC20C4) 2021.04-2024.03 参与 日本国土交通部综合研究院“新道路”科研项目 2018.08-2019.02 主持 京都市未来交通系统创新工程项目 2017.08-2018.02 参与 京都市未来交通系统创新工程项目 国际期刊论文 [1]Zhou, Y., Sun, W.*, & Schmöcker, J. D. (2024). Transit fares integrating alternative modes as a delay insurance. Transportation Research Part C: Emerging Technologies, 104745. https://doi.org/10.1016/j.trc.2024.104745 (Accepted for presentation at the 25th International Symposium on Transportation and Traffic Theory, ISTTT25) [2]Santiago-Iglesias, E., Romanillos, G., Carpio-Pinedo, J., Sun, W., & García-Palomares, J. C. (2024). Recovering urban nightlife: COVID-19 insights from Google Places activity trends in Madrid. Journal of Maps, 20(1), 2371927. https://doi.org/10.1080/17445647.2024.2371927 [3]Santiago-Iglesias, E., Romanillos, G., Sun, W., Schmöcker, J. D., Moya-Gómez, B., & García-Palomares, J. C. (2024). Light in the darkness: Urban nightlife, analyzing the impact and recovery of COVID-19 using mobile phone data. Cities, 153, 105276. https://doi.org/10.1016/j.cities.2024.105276 [4]Lu, Q. L., Sun, W.*, Dai, J., Schmöcker, J. D., & Antoniou, C. (2024). Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes. Reliability Engineering & System Safety, 247, 110095. https://doi.org/10.1016/j.ress.2024.110095 [5]Nozawa, K., Sun, W., Schmoecker, J. D., & Nakao, S. (2024). The Impact of COVID-19 Policies on Nightlife in Kyoto. Findings. https://doi.org/10.32866/001c.118552 [6]Ma, Y., Schmöcker, J. D., Sun, W.*, & Nakao, S. (2024). Unravelling route choices of large trucks using trajectory clustering and conditional Logit models. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2024.04.007 [7]Dai, J., Schmöcker, J. D., & Sun, W. (2024). Analyzing demand reduction and recovery of major rail stations in Japan during COVID-19 using mobile spatial statistics. Asian Transport Studies, 10, 100120. https://doi.org/10.1016/j.eastsj.2023.100120 [8]Sun, W.*, Kobayashi, H., Nakao, S., & Schmöcker, J. D. (2023). On the Relationship Between Crowdsourced Sentiments and Mobility Trends During COVID-19: A Case Study of Kyoto. Data Science for Transportation, 5(3), 17. https://doi.org/10.1007/s42421-023-00080-z [9]Santiago-Iglesias, E., Schmöcker, J. D., Carpio-Pinedo, J., García-Palomares, J. C., & Sun, W. (2023). Activity Reduction as Resilience Indicator: Evidence with Filomena Data. Findings. https://doi.org/10.32866/001c.88980 [10]Jee, H., Sun, W.*, Schmöcker, J. D., & Nakamura, T. (2023). Demonstrating the feasibility of using Wi-Fi sensors for dynamic bus-stop queue length estimation. Public Transport, 1-18. https://doi.org/10.1007/s12469-023-00336-5 [11]Santiago-Iglesias, E., Carpio-Pinedo, J., Sun, W., & García-Palomares, J. C. (2023). Frozen city: Analysing the disruption and resilience of urban activities during a heavy snowfall event using Google Popular Times. Urban Climate, 51, 101644. https://doi.org/10.1016/j.uclim.2023.101644 [12]Vongvanich, T., Sun, W.*, & Schmöcker, J. D. (2023). Explaining and Predicting Station Demand Patterns Using Google Popular Times Data. Data Science for Transportation, 5(2), 10. https://doi.org/10.1007/s42421-023-00072-z [13]Fei, F., Sun, W.*, Iacobucci, R., & Schmöcker, J. D. (2023). Exploring the profitability of using electric bus fleets for transport and power grid services. Transportation Research Part C: Emerging Technologies, 149, 104060. https://doi.org/10.1016/j.trc.2023.104060 [14]Lai, Y., Sun, W., Schmöcker, J.D., Fukuda, K. & Axhausen, K.W. (2022). Explaining a century of Swiss regional development by deep learning and SHAP values. Environment and Planning B: Urban Analytics and City Science, 1-16. https://doi.org/10.1177/23998083221116895 [15]Shen, K., Schmöcker, J.D., Sun, W. & Qureshi, A.G. (2022). Calibration of sightseeing tour choices considering multiple decision criteria with diminishing reward. Transportation, 1-25. https://doi.org/10.1007/s11116-022-10296-7 [16]Sun, W.*, Schmöcker, J.D., & Nakao, S. (2022). Restrictive and stimulative impacts of COVID-19 policies on activity trends: A case study of Kyoto. Transportation Research Interdisciplinary Perspectives, 13, 100551. https://doi.org/10.1016/j.trip.2022.100551 [17]Sun, W.*, Schmöcker, J.D., & Fukuda, K. (2021). Estimating the route-level passenger demand profile from bus dwell times. Transportation Research Part C: Emerging Technologies, 130, 103273. https://doi.org/10.1016/j.trc.2021.103273 [18]Sun, W., Schmöcker, J.D., & Nakamura, T. (2021). On the tradeoff between sensitivity and specificity in bus bunching prediction. Journal of Intelligent Transportation Systems, 25(4), 384-400. https://doi.org/10.1080/15472450.2020.1725887 [19]Sun, W., & Schmöcker, J.D. (2018). Considering passenger choices and overtaking in the bus bunching problem. Transportmetrica B: Transport Dynamics, 6(2), 151-168. https://doi.org/10.1080/21680566.2017.1387876 [20]Schmöcker, J.D., Sun, W., Fonzone, A., & Liu, R. (2016). Bus bunching along a corridor served by two lines. Transportation Research Part B: Methodological, 93, 300-317. https://doi.org/10.1016/j.trb.2016.07.005 参编英文专著 [1]Sun, W.*, Schmöcker, J.D., Lai, Y., & Fukuda, K. (2023). The potential of explainable deep learning for public transport planning. In The Handbook on Artificial Intelligence and Transport (pp. 155-175). Edited by Hussein Dia. Edward Elgar. https://doi.org/10.4337/9781803929545.00013 [2]Sun, W.*, & Schmöcker, J.D. (2021). Demand estimation for public transport network planning. In The Routledge Handbook of Public Transport (pp. 289-305). Edited by Corinne Mulley, John D. Nelson, Stephen Ison. Routledge. https://doi.org/10.4324/9780367816698-24 |
期刊审稿人 [1]Case Studies on Transport Policy, Elsevier [2]Computers & Industrial Engineering, Elsevier [3]IEEE Open Journal of Intelligent Transportation Systems, IEEE [4]IEEE Transactions on Intelligent Transportation Systems, IEEE [5]IET Intelligent Transport Systems, Wiley [6]Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, Taylor & Francis [7]Public Transport, Springer Nature [8]Scientific Data, Nature [9]Transportation, Springer Nature [10]Transportation Research Interdisciplinary Perspectives [11]Transportation Research Part A: Policy and Practice, Elsevier [12]Transportation Research Part B: Methodological, Elsevier [13]Transportation Research Part C: Emerging Technologies, Elsevier [14]Transportation Research Part F: Traffic Psychology and Behaviour, Elsevier [15]Transportmetrica B: Transport Dynamics, Taylor & Francis 东亚运输协会(Eastern Asia Society for Transportation Studies,EASTS)会员 日本土木学会会员 |
人才计划 2023.11,上海领军人才(海外) 科研获奖 2023.10,欧洲交通学会(Euro Working Group on Transportation,EWGT),EWGT 2023会议最佳论文奖,第二完成人、通讯作者(第一完成人为指导学生) 2023.09,东亚交通研究学会(Eastern Asia Society for Transportation Studies,EASTS),EASTS 2023会议最佳青年墙报奖,第二完成人、通讯作者(第一完成人为指导学生) 2016.02,京都大学都市社会工学最佳硕士论文 2016.02,京都大学都市社会工学荣誉工程师奖 其他 2020.09,京都大学工学研究科毕业生代表 2018.04-2020.03,乐天财团奖学金 |